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Commonly used traditional molecular-replacement (MR)

methods, though often successful, have dif®culty solving

certain classes of MR problems. In addition, MR problems

are generally very dif®cult global optimization problems

because of the enormous number of local minima in

traditionally computed target functions. As a result, a new

MR program called SOMoRe is introduced that implements

a new global optimization strategy that has two major

components: (i) a six-dimensional global search of a target

function computed from low-resolution data and (ii) multi-

start local optimization. Because the target function computed

from low-resolution data is relatively smooth, the global

search can coarsely sample the MR variable space to identify

good starting points for extensive multi-start local optimiza-

tion. Consequently, SOMoRe was able to straightforwardly

solve four realistic test problems, including two that could not

be directly solved by traditional MR programs, and SOMoRe

solved a problem using a less complete model than those

required by two traditional programs and a stochastic six-

dimensional program. Based on these results, this new strategy

promises to extend the applicability and robustness of MR.
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1. Introduction

When X-ray crystallography is used to determine the structure

of a protein molecule, the phase problem must be overcome.

One method for attacking the phase problem is to solve the

more tractable molecular-replacement (MR) problem, which

is a nonlinear optimization problem with dimensions much

smaller than the phase problem. The goal of an MR method is

to ®nd the rotations and translations of a given protein model

that produce calculated intensities closest to those observed

from a crystal with unknown atomic structure. In general, the

use of MR methods is expected to increase as more structures

are solved and deposited in the Protein Data Bank (PDB;

Berman et al., 2000), because it will be more likely that an

accurate model protein will be available for a given MR

problem. However, research is still needed to develop more

reliable and robust MR methods.

2. Current approaches

Currently, there are two basic sets of approaches for solving

the MR problem: (i) traditional approaches, which separately

optimize the rotational and translational degrees of freedom

of the protein model in the new unit cell, and (ii) higher

dimensional approaches, either six-dimensional (6D) or

6n-dimensional (6nD), which simultaneously optimize these

degrees of freedom for one or n copies of the protein model.



In 1962, Rossmann and Blow proposed that the MR

problem be solved ®rst by a search for optimal rotations of the

model and then by a separate search for optimal translations

of the oriented model (Rossmann & Blow, 1962). However,

there are two main drawbacks to this approach. Firstly, for

more dif®cult MR problems the lowest valued local minima of

traditional rotation functions often do not represent the true

rotation component of a MR solution (Jogl et al., 2001;

Kissinger et al., 1999; Tong, 1996). If the optimal rotation is not

found, then the optimal translation cannot be found and the

traditional method fails. Secondly, the approximations

inherent in traditional methods typically require models that

are structurally very similar to the target protein whose

structure is to be determined (BruÈ nger, 1990, 1993, 1997).

Traditional methods are known to encounter dif®culty

either when the molecules are tightly packed in the crystal

(Chang & Lewis, 1997; Glykos & Kokkinidis, 2000; Sheriff et

al., 1999; Tong, 1996), when the crystallized molecule has an

elongated shape (Baker et al., 1995; Chang & Lewis, 1997;

Glykos & Kokkinidis, 2001) or when there are many molecules

in the crystal unit cell (Baker et al., 1995; Glykos & Kokkinidis,

2000; Tong, 1996). These problems result primarily because

the rotation and translation variables are not optimized

simultaneously in the traditional formulation. When either the

molecules are tightly packed or the molecule has an elongated

shape, the self-vectors and cross-vectors that characterize

intensity-based target functions cannot be conveniently

separated and interpretation of both the rotation and trans-

lation functions can be dif®cult (Chang & Lewis, 1997). In the

third case, when there are many molecules in the crystal unit

cell, traditional methods encounter dif®culty because the ratio

of the number of cross-vectors to self-vectors increases. An

exception is when the molecules exhibit known high non-

crystallographic symmetry which can be exploited (Tong &

Rossmann, 1990).

To avoid the drawbacks associated with separately opti-

mizing the orientation and position of the model, parallelized

6D searches (Sheriff et al., 1999) and both 6D and 6nD

stochastic optimization approaches have been proposed

(Chang & Lewis, 1997; Kissinger et al., 1999; Glykos &

Kokkinidis, 2000). In contrast to traditional methods, 6D

methods simulate scattering from the symmetry mates in the

unit cell because the extra translational degrees of freedom ®x

the unit-cell origin, thereby allowing the symmetry mates to be

positioned relative to each other. Several researchers have

stated that the failures of traditional approaches are a

consequence of their inability to model all Patterson vectors

(Chang & Lewis, 1997; Kissinger et al., 1999; Sheriff et al.,

1999).

3. New global optimization strategy

We implement a 6D deterministic strategy because we believe

that a deterministic approach is generally more reliable than a

stochastic one. However, we want a 6D approach that does not

®nely sample the MR variable space, because unless such a

search is massively parallelized, the run times are still often

prohibitive. Current deterministic 6D approaches must ®nely

sample the variable space because of the many local minima in

the MR target functions that are used to measure the

disagreement between the observed and calculated intensities.

The enormous number of local minima result because usually

primarily medium- to high-resolution intensities are used to

compute the target function.

This effect on the target function can be seen by noticing

that the higher resolution intensities determine the highest

frequency of the complex exponential function of a structure

factor and therefore the rough landscape of the target func-

tion. The de®nition of the structure factor occurring at h is

Fc
h��; t� � PG

g�1

PN
j�1

fj�d��h�� exp
ÿ
2�ih � fSg�Aÿ1
���Axj � t� � sgg

�
;

�1�
where � = (�1, �2, �3) is a vector of angles, t is a translation in

fractional coordinates, 
(�) is an orthonormal rotation

matrix, G is the number of symmetry operators, N is the

number of atoms in the model, fj[d*(h)] is the atomic scat-

tering factor for the jth atom for the given lattice point h, Sg

and sg represent the gth crystallographic symmetry operator,

xj = (xj, yj, zj)
T are fractional coordinates of the jth atom, Aÿ1 is

a matrix that converts orthogonal real-space coordinates to

fractional ones and A converts fractional real-space coordi-

nates to orthogonal ones. The corresponding calculated

intensity is Ic
h � Ic

h��; t� = jFc
h��; t�j2. Thus, the `angle',

!gj
h � 2�h � fSg�Aÿ1
���Axj � t� � sgg;

shows that the frequency of Ic
h is determined by h. The farther

h is from the origin, the higher the spatial frequency of Fh. This

frequency determines the overall landscape of the target

function and therefore the amount of local convexity about

the global minima and the `radius of convergence' of a local

optimization method.

3.1. A surrogate low-resolution target function

Our new strategy will initially use a target function that has

been computed from primarily low-resolution intensities. In

general, such a low-frequency target function will have a

smoother landscape and the 6D grid search can be coarser

than the search required for a target function computed from

high-resolution data. The correct balance between the accu-

racy of this function and the coarseness of the global search

was a primary topic of investigation that was determined

experimentally by varying the high-resolution cutoff of this

function's data set. Throughout the text, we will refer to this

low-frequency function that is used only during the coarse

global search as the surrogate low-resolution function.

3.2. The new strategy

The new strategy has two major components: a coarse 6D

global search and multi-start local optimization. Firstly, a

global search coarsely samples the surrogate low-resolution

target function to identify good starting points for multi-start

local optimization. Next, starting from the points with the
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lowest function values, multi-start local optimization is initi-

ated using a more accurate target function computed from a

more complete higher resolution set of intensities. As a result,

local optimization efforts will be focused on regions of the MR

variable space where MR solutions are more likely to exist, in

contrast to traditional methods or 6D searches that exhaust-

ively search a uniformly ®ne grid, and in contrast to 6D

stochastic methods that randomly sample the variable space.

Finally, all the 6D local minima are ranked according to their

function values and some post-processing is performed.

Step 0. (a) Choose a low-resolution data set and a higher

resolution one. (b) De®ne a coarse grid determined by some

increments of the MR variables.

Step 1. Evaluate the surrogate low-resolution target func-

tion at every point in the coarse grid.

Step 2. Identify the 6D points that produce, for example, the

1000 lowest function values of the target function.

Step 3. Use these points as starting points for multi-start

local optimization of the target function computed from the

high-resolution data.

Step 4. Perform post-processing: examination of free values

and crystallographic packing checks.

In general, the 6D formulation of the MR problem is used

rather than the traditional one not only because the calculated

intensities will be more accurate, but also because traditional

rotation functions appear to perform poorly when low-

resolution data are used. BruÈ nger and coworkers report that if

predominantly low-resolution data are used, then the global

minima of a commonly used traditional rotation function are

unlikely to correspond to MR solutions (BruÈ nger, 1997;

DeLano & BruÈ nger, 1995). In addition, Jamrog (2002)

demonstrates that a commonly used 6D target function can be

more accurate than its traditional counterpart when low-

resolution data are used.

3.3. Novel aspects of the approach

The new approach is very different from mainstream MR

approaches because it initially uses a low-frequency target

function. Currently, coarse low-resolution global searches are

atypical. Low-resolution data are not typically used because

they can be more dif®cult to measure (Evans et al., 2000; Miller

et al., 1999) and extra modeling is required to calculate low-

resolution data because their magnitudes are affected by the

crystal's bulk solvent; see, for example, Urzhumtsev &

Podjarny (1995). In addition, low-resolution intensities have

not provided computational success when used with the

traditional approaches. A few researchers implementing

higher dimensional searches advocate using low-resolution

data so that coarser grid searches can be used (Rabinovich et

al., 1998; Rabinovich & Shakked, 1984). However, such higher

dimensional coarse searches have not been adopted.

One possible reason such searches are not common is that a

coarse grid search alone is unlikely to identify an MR solution.

In such a search, it is most likely that there will not be a grid

point close enough to a global minimum to produce a function

value that stands out in comparison to the other function

values computed. Clearly, a coarse sampling does not neces-

sarily produce grid points close to a minimum. Therefore,

extensive local optimization of, for example, between 500 and

1000 grid points is a necessary and integral component of the

new strategy. As a result, the strategy shifts the emphasis from

the grid search onto local optimization and therefore is also

very different from current MR strategies.

4. Implementation

Firstly, we de®ne our target function. Next, we de®ne the

variables used to de®ne the coarse sampling of the MR vari-

able space and ®nally we discuss the local optimization

method and post-processing.

4.1. Target function: correlation coefficient

We use the following standard linear correlation coef®cient

as our target function,

C�Ic; Io� �
P

h

�Ic
h ÿ hIci��Io

h ÿ hIoi�
P

h

�Ic
h ÿ hIci�2

� �1=2 P
h

�Io
h ÿ hIoi�2

� �1=2
; �2�

where Io
h and Ic

h are the observed and calculated intensities

occurring at the reciprocal-lattice points h and hIoi and hIci are

the average values of the observed and calculated intensities,

respectively. Of course, jFo
h j and jFc

hj can also be used. This

function is commonly used; see Grosse-Kunstleve & Adams

(2001) and Navaza (2001) for examples.

4.2. Global search

The grid points in the global search are pi = (�i, ti), where

�i are Eulerian angles that are used to rotate the reciprocal

lattice to compute the structure factors of the rotated model

and ti are translations of the model. The sampling of orien-

tation space is in terms of Lattman angles (Lattman, 1972);

Lattman angles are then converted to Eulerian angles because

symmetry relationships among possible solutions are easily

identi®ed when the Eulerian angles are used. Lattman angles

and the optimal Lattman sampling are used because they

sample angular space more uniformly than Eulerian angles

and because the number of �i decreases by a factor of 2/� in

comparison to a constant Eulerian sampling (Lattman, 1972).

The de®nition of ��2 used by SOMoRe to determine the

optimal sampling is

��2 � 2 arcsinfrhigh=�2�a� b� c�=3�g; �3�

where rhigh is the high-resolution cutoff of the surrogate

function's data set and a, b and c are the lengths of the unit-

cell basis vectors. This de®nition is the same as that used by

CNS v. 1.0 (BruÈ nger et al., 1998).

Similarly, the step sizes for translational variables are

functions of the high-resolution cutoff,

�tx � rhigh=�3a�; �ty � rhigh=�3b�; �tz � rhigh=�3c�: �4�



Larger rhigh values allow larger step sizes (lower frequencies in

the surrogate function). These are the same step sizes imple-

mented and justi®ed by BruÈ nger in X-PLOR version 3.1

(BruÈ nger, 1992).

4.3. Local optimization

The local optimization method implemented in SOMoRe is

the Broyden±Fletcher±Goldfarb±Shanno (BFGS) secant

method (see, for example, Nocedal & Wright, 1999). We

choose BFGS since an analytical expression is not readily

available for the Hessian of C(Ic, Io) because an interpolation

is utilized to determine a new set of structure factors for each

orientation and translation in the 6D sampling, as described by

Chang & Lewis (1997). For the same reason, we use a ®nite-

difference approximation to the gradient. Appendix A

contains the de®nition of the ®nite-difference gradient used by

SOMoRe. We choose BFGS over the conjugate-gradient

method because its convergence rate is superlinear rather than

linear (see, for example, Nash & Sofer, 1996). See Jamrog

(2002) for more information about the implementation of

BFGS in SOMoRe.

4.4. Post-processing

There are two post-processing components: (i) examination

of free values and (ii) crystallographic packing checks. A

researcher primarily relies on a list of the lowest valued local

minima. The greater the contrast between the function's

values, the more con®dence the researcher will have that the

lowest valued points are solutions. However, we also use free

values or function values that are computed from a randomly

chosen 10% of the data set. These values are not used during

the global search or local optimization. During the global

search, the lowest M function values are retained regardless of

the associated free values.

Points output by an MR code can be immediately dismissed

if the packing of symmetry mates of the positioned model is

bad; that is, they interpenetrate to a signi®cant degree. To

determine the degree of interpenetration, every intra-atomic

distance between the symmetry mates is computed and then

compared with a threshold to see if any distance violations or

inter-atomic distances smaller than the threshold occur (Tong,

1996; Jamrog, 2002).

5. Criterion for evaluating the results

Because each test problem uses experimental data for which

the crystal structure has been determined and deposited in the

PDB, one measure to judge the output of SOMoRe is the root-

mean-square deviation (RMSD) between the coordinates of

the reoriented model and the coordinates of the known

structure. A point identi®ed by an MR method may map the

model onto any one of the target's symmetry mates. Thus, we

de®ne the RMSD to be the minimum of all RMSDs computed

between the target structure and the reoriented model's

symmetry mates:

RMSD �min

� PN
j�1

jjAxj ÿ A�Sgx0j��; t� � sg�jj2
( )

=N

 !1=2

;

g � 1; . . . ;G

�
; �5�

where xj and x0j(�, t) are the jth fractional coordinates of the

target protein and the repositioned model, respectively.

Furthermore, the symmetry mates directly produced by the

symmetry operators may be in unit cells other than the

particular unit cell of the target structure. Thus, before

calculating the RMSD, each symmetry mate should be moved

an integer number of unit-cell basis-vector translations so that

it is the closest symmetry mate of its kind to the target

structure to ensure that the RMSD will be as small as possible.

A pseudo code for determining the closest symmetry mate is

given in Appendix B.

We note that RMSDs cited in the MR literature are

computed by trying to determine the best ®t between two

given structures and should be close to the smallest RMSD

possible. Thus, we call such an RMSD `optimal' and judge the

quality of (�, t) by comparing the RMSD de®ned by (5) with

the optimal one.

6. Test problems and results

We analyze the numerical results produced by SOMoRe on

four test problems: a problem with a very good model, two

problems that have either defeated or severely challenged

traditional MR software and ®nally a problem with protein

models that range from being complete to only 37% complete.

6.1. General description of experiments

All test problems were taken from articles that introduce

new MR algorithms or software. For each test problem, two

global searches were performed: one using all available data

between1 and 8 AÊ resolution and another using all available

data between1 and 10 AÊ . These two resolution ranges were

chosen because the run times were reasonable and the results

demonstrate that 8 AÊ appears to be a safe high-resolution

cutoff. It is important to approximately determine the largest

possible high-resolution cutoff that will allow the surrogate

function to identify good starting points because the larger the

high-resolution cutoff, the faster the run time. After each

global search, local optimization is performed using data

between 1 and 4 AÊ .

We summarize the information for each test problem in

Table 1. Because of crystallographic symmetry, the translation

t is restricted to the subset of the unit cell listed in Table 1,

known as the Cheshire-group unit cell (Hirshfeld, 1968),

except for 6rhn. The range for 6rhn is not the Cheshire-group

unit cell, but it is consistent with the space group. In addition,

each problem was 6D because there was only one molecule in

the asymmetric unit.

6.1.1. Parameters. SOMoRe is based on the fast target-

function evaluation algorithm of Qs (Glykos & Kokkinidis,

2000), described by Chang & Lewis (1997). Like Qs, SOMoRe
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has several parameters that affect the accuracy and ef®ciency

of the structure-factor calculations. For all experiments, the

interpolation scheme was linear and the size of the

model's arti®cial unit cell was increased by a factor of 4.0 to

accurately sample the model's Fourier transform. In addition,

all structure factors were

scaled by an exponential term

to simulate the bulk-solvent

environment of the crystal:

1 ÿ kSOL exp[BSOL(d*h)2/4)],

where kSOL = 0.785 and

BSOL = 205.0 (Glykos & Kokki-

nidis, 2001). Furthermore, all

calculated intensities were scaled

by the linear scale factor

� =
P

h jFo
h jk=

P
h jFc

hjk. This scale

factor appears to work well with the current computation of

the ®nite-difference gradient.

6.1.2. Terminology. When we refer to an `8 AÊ search' or a

`10 AÊ search', we are referring to the global search using all

available data between 1 and 8 AÊ and 1 and 10 AÊ , respec-

tively. Secondly, we call a global search `successful' if after

optimization a minimum is found that has an associated

RMSD close to the `optimal' one. In addition, it is `successful'

only if this RMSD is associated with a target-function

minimum that is either the lowest valued minimum or the

lowest valued minimum after other minima are ruled out. A

minimizer that produces a repositioned model that has an

RMSD that is within 1 AÊ of the optimal RMSD is considered

to be a solution.

6.2. Results for test problem 1aki

We present the results for test problem 1aki because

experience was gained in determining the appropriate high-

resolution cutoff of the surrogate function's data set. This

problem appears in Glykos & Kokkinidis (2000). The data are

the observed intensities deposited with the coordinates of a

chicken egg-white lysozyme (PDB code 1aki). The model is

quail lysozyme (PDB code 2ihl), reported to have an optimal

RMSD of 1.2 AÊ from 1aki (Glykos & Kokkinidis, 2000).

The 8 AÊ global search using 1 ÿ C(Io, Ic) was a success.

However, the 10 AÊ global search was not. During the 8 AÊ

search, the points that produced the 1000 lowest function

values were identi®ed for use as starting points for local

optimization. Of these points, the closest grid point to a global

minimum was the 108th lowest valued point because this point

had the lowest associated RMSD of 2.11 AÊ . This point is 108th

primarily because the grid search is coarse, but also because

the surrogate low-resolution function is not as accurate as a

target function computed using more higher resolution data.

However, the grid point is close enough for the new strategy to

succeed. During local optimization, the starting points with the

four lowest RMSDs converged to local minima with associated

RMSDs of 1.0 AÊ ; when the 1000 local minima are ranked

according to their function values, the minima with associated

RMSDs of 1.0 AÊ are at the top of the list.

The leftmost bar chart in Fig. 1(a) shows the function values

of the starting points (light gray bars) that converge to the 30

lowest valued minima and the function values of the 30

minima (dark gray bars). Several starting points converged to

the same global minima. The rightmost bar chart in Fig. 1(b)

Table 1
Relevant information for each test problem.

The size of the protein refers to its number of amino acids. The last column gives the lowest RMSDs computed for
each test problem, showing that the new strategy successfully solved each problem.

Problem
name Size

Space
group

No. symmetry
operators

Resolution
range (AÊ )

Translation
range

`Optimal'
RMSD

Computed
RMSD

1aki Lysozyme 129 P212121 4 15±1.5 1
2a � 1

2b � 1
2c 1.2 1.01

1cgn Cytochrome c0 128 P6522 12 20±2.2 a � b � 1
2c 1.3 1.38

1b6q Helical bundle 56 C2221 4 40.8±1.8 1
2a � 1

2b � 1
2c 0.2 0.39

6rhn Histidine 126 P43212 8 35.1±2.2 1
2a � 1

2b � 1
4c 0.3 0.32

Figure 1
Local optimization results from an 8 AÊ global search for 1aki. Bar charts
indicating function values (a) and RMSDs (b) before (light gray) and
after optimization at 4 AÊ (dark gray). The contrast in function value
between the ®rst four points and the ®fth is an accurate indicator that the
remaining local minima are not solutions. A white bar in (b) indicates that
the RMSD increased as a result of optimization by the height of the white
bar; that is, the value before optimization would be the height of the dark
gray bar minus the height of the white bar. Most importantly, an increase
in RMSD has not been observed when a starting point is close to a
solution.



shows the corresponding RMSDs, demonstrating that the

lowest valued local minima are solutions.

6.3. Results for two difficult problems

These test problems are problems that either could not be

solved using traditional MR software or for which the solution

to the problem was not immediately obvious using such soft-

ware.

6.3.1. Test problem 1cgn. Problem 1cgn appears in

Kissinger et al. (1999). The data are the observed intensities

deposited with the coordinates of cytochrome c0 from the

bacteria Alcaligenes denitri®cans (PDB code 1cgn). The model

is the polyalanine part of cytochrome c0 from the bacteria

Rhodospirillum molischianum, speci®cally amino acids 3±125

plus the heme group (PDB code 2ccy). This model was one of

the models used in the original structure determination.

We estimate the optimal RMSD between 2ccy and 1cgn to

be roughly 1.3 AÊ , using the RMSD computed between 2ccy

and 1cgo, which is 1.27 AÊ (Baker et al., 1995), and the RMSD

between the backbones of 1cgo and 1cgn, which is 0.17 AÊ

(Dobbs et al., 1996). The atoms we use in our RMSD calcu-

lation are similar to those used by Baker et al. (1995). To

compute the RMSDs between 1cgn and 2ccy, amino acids

4±30, 41±57, 80±95 and 104±120 plus the heme from 1cgn were

paired with amino acids 4±30, 40±56, 83±98 and 106±122 plus

the heme from 2ccy, thereby excluding the three loop regions.

SEQUOIA (Bruns et al., 1999) ®nds the RMSD between 119

of the amino acids (that it ®nds to be equivalent) in 2ccy and

1cgn to be 1.9 AÊ , demonstrating the difference in the loops of

the two structures.

The original structure determination was dif®cult. X-PLOR

(BruÈ nger, 1992) and the rotation function of ALMN (Colla-

borative Computational Project, Number 4, 1994) failed

(Baker et al., 1995). Rotation searches using AMoRe (Navaza,

1994), four different models and two different resolution

ranges also failed to indicate a solution that Baker et al. (1995)

hoped

would appear in most, if not all, of the experiments. . . even if it

was not necessarily the top solution in each case.

In the end, the problem was solved using AMoRe, but to do so

required a lot of supplementary information, including the

anomalous scattering of the Fe atom, density-modi®cation

methods and an isomorphous data set. In contrast, the solution

is easily identi®able using SOMoRe without using any of the

supplementary information.

6.3.2. 8 AÊ search for 1cgn. For this problem if C(Io, Ic) is

used, then the 8 AÊ search is not successful. Based on some

numerical results, we suspect that the target function

C(|F o|, |F c|) is likely to be more accurate than C(Io, Ic) when

low-resolution data is used (Jamrog, 2002). The lowest RMSD

calculated from the grid points with the lowest 10 000 function

values was approximately 3.27 AÊ , too far from a solution to

converge to it using local optimization. However, the problem

can be solved using an 8 AÊ search and C(|F o|, |F c|).

The solution can be found by ®rst examining the free

function values and then the distance violations from the

packing checks. Fig. 2 shows the function values of the 40

lowest valued local minima. As shown in Fig. 3(a), 16 minima

have low free values. The local minima with relatively high

free values should be ruled out. Then, if the distance violations

of these 16 minima are taken into consideration, every minima

except two can be ruled out, as shown in Fig. 3(b). The other

minima produce interpenetration of the symmetry mates that

was detected by packing checks using a threshold of 2 AÊ . The

last two remaining minima are solutions with RMSDs of 1.4 AÊ ,

as shown in Fig. 3(c).

6.3.3. 10 AÊ search for 1cgn. In contrast, a 10 AÊ search using

1ÿ C(Io, Ic) was successful. When the same protocol is used to

eliminate local minima that are not solutions, as before, only

the solutions remain. We do not show the bar charts because

they are very similar (Jamrog, 2002).

6.3.4. Test problem 1b6q. Test problem 1b6q appears in

Glykos & Kokkinidis (2001). The data and accurate model

were both kindly supplied to us by N. Glykos (Glykos &

Kokkinidis, 1999). The target structure is a two-�-helical

bundle (PDB code 1b6q). The search model is an `essentially

perfect' polyalanine model of the two helices that was re®ned

by a simulated-annealing procedure (Glykos & Kokkinidis,

1999). In fact, the optimal RMSD between this model and

1b6q is reported to be less than 0.2 AÊ (Glykos & Kokkinidis,

2001).

However, Glykos & Kokkinidis (2001) report that even

though the

search model is exceptionally accurate and the data of high

quality, conventional methods (program MOLREP) could not

identify the correct solution during the default run.

This MR problem is more dif®cult for traditional approaches

than for a 6D approach because the assumption that the cross-

vectors and self-vectors are `topologically separate' is false

(Glykos & Kokkinidis, 2001). Because the protein consists of

�-helices there will be long self-vectors and because the crystal

contains only 30% solvent there will be short cross-vectors.

Therefore, the standard trick of traditional approaches to

choose an appropriate volume of integration to try to include

only self-vectors and exclude cross-vectors will not work.
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Figure 2
Function values before (light gray) and after (dark gray) optimization at
4 AÊ resolution of 8 AÊ resolution global search results for 1cgn.



research papers

310 Jamrog et al. � SOMoRe Acta Cryst. (2003). D59, 304±314

In contrast, SOMoRe ef®ciently ®nds a solution to this MR

problem using either an 8 or 10 AÊ search. The function values

of the lowest valued minima are shown in Fig. 4(a), while the

corresponding RMSDs are shown in Fig. 4(b). Again, there is

a jump in the correlation-coef®cient values that distinguishes

solutions from non-solutions. The bar charts for the 10 AÊ

search results are very similar (Jamrog, 2002); therefore, we do

not show them.

6.4. Results for a problem using increasingly incomplete
models

Test problem 6rhn is de®ned in Kissinger et al. (1999, 2001).

This test problem was designed to determine how much of the

model protein could be removed without preventing the MR

problem from being solved. In the ®rst article, the new 6D

stochastic approach EPMR is compared with the traditional

approaches X-PLOR and AMoRe. In the second article, the

relationship between increased model truncation and

decreased search ef®ciency of EPMR is discussed.

For this MR problem, the model is the polyalanine part of a

rabbit histidine-triad nuclear-binding protein (PDB code

4rhn). The data are the experimentally observed structure-

factor magnitudes deposited with the coordinates of the same

protein that crystallized with different symmetry (PDB code

Figure 3
Results from 4 AÊ optimization of the initial 8 AÊ search results for 1cgn.
(a) shows free values before optimization (light gray) and after
optimization (dark gray). (b) shows the distance violations associated
with each of the 40 lowest valued local minimum and (c) shows RMSDs
before (light gray) and after optimization (dark gray). Again, a white bar
indicates a value that has increased owing to optimization, such that the
value before optimization is the height of the dark gray bar minus the
height of the white bar.

Figure 4
(a) Function values and (b) RMSDs before (light gray) and after
optimization (dark gray) of the 8 AÊ global search results for 1b6q.



6rhn). The optimal RMSD between the polyalanine parts of

4rhn and 6rhn is cited as 0.3 AÊ (Kissinger et al., 2001).

In the ®rst article, an initial model, consisting of the poly-

alanine part of 4rhn containing 104 out of 115 residues, was

truncated by ®ve or six amino acids at a time from the

C-terminal end (Kissinger et al., 1999). In the second article,

amino acids were removed from the polyalanine model one at

a time until EPMR could not ®nd a solution; that is, the

highest correlation coef®cient obtained after 100 searches by

EPMR did not correspond to a solution. SOMoRe was simi-

larly tested, using models that contained 104, 99, 93, 88, 82, 77,

71, 66, 60, 55, 49 and 44 residues, and then, because the 8 AÊ

search was successful using the 44-residue model and the least

complete model that EPMR could use to ®nd a solution

contained 44 residues, the 44-residue model was truncated one

residue at a time until SOMoRe failed. For the 8 and 10 AÊ

global searches, 1 ÿ C(|Fo|, |Fc|) was used. Kissinger et al.

(1999) also used this target function. However, all available

low-resolution data to 4 AÊ was used for local optimization,

while Kissinger et al. (1999) used only the data in the resolu-

tion range 15±4 AÊ .

SOMoRe ®nds a solution to the MR problem using a model

that contains only 42 residues. The least complete models that

allowed EPMR, X-PLOR and AMoRe to succeed contained

44 residues (Kissinger et al., 2001) and approximately 62 and

67 residues, respectively (Kissinger et al., 1999). The authors

state that the models for X-PLOR and AMoRe could be

truncated by approximately 40 and 35%, respectively.

Assuming that 100% of the model is the ®rst 104 residues of

4rhn, then the models could be truncated by 42 residues for

X-PLOR and 37 residues for AMoRe (Kissinger et al., 1999).

Table 2 summarizes these results.

Furthermore, according to Kissinger et al. (2001), if the

search model has been truncated by 60% (leaving a 46-residue

polyalanine model), then the search ef®ciency of EMPR is

approximately 5% (only ®ve out of 100 runs were successful).

In contrast, the search ef®ciency of SOMoRe is always 100%

because the approach is deterministic.

6.4.1. 8 AÊ searches. Overall, despite varying amounts of

model truncation, the lowest valued local minimum is a

solution. In general, as the model is truncated there is a linear

decrease in the contrast between function values associated

with solutions and non-solutions and a linear decrease in the

function values of the lowest valued minimum, as shown in

Fig. 5. Interestingly, however, the contrast between free values

does not decrease linearly, as also shown in Fig. 5. The free

values clearly differentiate solutions from non-solutions and

play a larger role in cross-validating possible solutions for the

least complete models. Model truncation has a similar effect

on the RMSDs associated with these minima, as shown in

Fig. 6. For the last six most incomplete models, there appears

to be a linear increase in the associated RMSDs.

6.4.2. 10 AÊ search 6rhn. In contrast, the 10 AÊ searches were

successful only using models containing 104, 99, 93 and 88

residues. The successful search results are very similar to the

corresponding 8 AÊ results (Jamrog, 2002). Thus, if the model

represents a small portion of the target structure, it may be

advantageous to use an 8 AÊ global search.

6.5. Run times

The run times for SOMoRe are very reasonable given that

6D searches are performed, as shown in Table 3. All experi-

ments were run at Rice University on a 300 MHZ R12000

processor of an SGI Origin2000 machine, which has 10 Gb of

RAM. Table 3 also indicates the unsuccessful 10 AÊ searches
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Table 2
The maximum amount of model truncation tolerated by the MR
approaches where the model is the polyalanine part of 4rhn, which has
115 amino acids.

MR code
No. of amino acids in
the least complete model

Truncation of the
poly-Ala model (%)

SOMoRe 42 63
EPMR 44 62
X-PLOR �62 �46
AMoRe �67 �42

Figure 5
Bar charts showing the lowest function value found and the jumps in
C(|Fo| ÿ |Fc|) and the free function values between solutions and non-
solutions after optimization of the 8 AÊ search results.

Figure 6
RMSDs associated with the best function value found after optimization
of the 8 AÊ search results.
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with an asterisk. The run times for 6rhn are the average of all

run times.

In general, run time is a function of the number of inten-

sities in the resolution range and the number of symmetry

operators. Given a set of proteins that are roughly the same

size and crystals with the same liquid content, the more

symmetry mates the larger the unit cell and the longer the run

time, because the step lengths in the MR variables are inver-

sely related to the average of the lengths of the unit-cell basis

vectors. In addition, the larger the unit cell, the smaller the

spacing of the diffraction pattern and the more data in a given

resolution range.

We note that it will be more time-consuming to solve the

structures of larger sized proteins using SOMoRe and that this

will be a topic of future investigation. The time-consuming

grid-search part of the calculation is easily parallelizable

owing to the independence of the calculations at each grid

point and the program is being adapted for cluster computing

for this purpose.

Finally, to show the ef®ciency of our approach over a simple

high-resolution 6D search, we estimate the run time for a 6D

search of a target function computed using data between 1
and 4 AÊ . Using the method for calculating structure factors

described by Chang & Lewis (1997) and implemented in Qs

(Glykos & Kokkinidis, 2000), the run time is only linearly

dependent on the number of re¯ections and, of course for our

method, linearly dependent on the number of grid points. To

compute the estimated run time, we determine the number of

grid points in the ®ne search, f2, and the number of intensities

between 1 to 4 AÊ , d2. (We run SOMoRe to obtain this

information and then kill the run.) Then, for each problem, we

multiply the run time for the 8 AÊ search by

factor � f2

f1

� d2

d1

; �6�

where f1 is the number of grid points in the 8 AÊ global search

and d1 is the number of intensities between 1 and 8 AÊ . As

shown in Table 4, unless a massively parallelized search is

performed, 6D grid searches are still out of reach for most MR

problems.

7. New protein structure

We have recently used SOMoRe to solve the structure of

adenylate kinase from Bacillus subtilis. This new protein

structure had not been previously determined. The lowest

valued local minimizer was a solution for a majority of the

protein structure, as veri®ed by inspection of the electron-

density maps. The coordinate set used for the search model

has a high degree of sequence homology; however, it also has

an unusual position of the so-called `lid' domain, comprising

25 or so amino acids. To determine the correct position of the

lid domain relative to the remainder of the model, we again

used SOMoRe, except this time we performed a local 6D

search about the initial position of the lid, which was speci®ed

by lowest valued local minima found for the entire model, and

then local optimization of the best local grid points. As a

result, we found the correct position of this domain. Attempts

to determine the position for the lid domain using rigid-body

re®nement in the CNS program had failed. During the process,

we used the same high-resolution cutoffs for the surrogate

function and the local optimization that we used for the

above-described test problems. The protein structure has been

successfully re®ned and the structure determination will be

published in detail.

8. Conclusions

Our new strategy was successful on every test problem. Table 1

lists the estimated `optimal' RMSD and the RMSDs computed

from the lowest valued minima, or in the case of 1cgn, the

lowest valued minimum after other minima were ruled out.

As a result, SOMoRe promises to extend the applicability of

MR because it straightforwardly solved test problems 1cgn

and 1b6q. `AMoRe, which is commonly recognized as the best

in the ®eld' (Vagin & Teplyakov, 1997) could not solve test

problem 1cgn in a straightforward way, while the traditional

code MOLREP could not solve test problem 1b6q, despite the

availability of a very good model. In addition, our method

solved a problem using a less complete model than the models

required by EPMR, X-PLOR and AMoRe. The results from

this test problem corroborate our hypothesis that six-

dimensional approaches should be able to solve MR problems

using models that are less complete than those required by

traditional approaches.

In general, we have demonstrated that a coarse 6D global

search can identify starting points that will converge to MR

solutions. Secondly, we have shown that 8 AÊ appears to be a

Table 3
Global search and optimization run times for each test problem.

An asterisk indicates an unsuccessful search.

No. of
symmetry
operators

No. of
Io

h ��2

No. of
grid
points

Search
time
(h)

No. of
starting
points

Opt. time
1±4 AÊ

(min)

8 AÊ structures
1aki 4 143 8.7 21919248 3.35 1000 49
1cgn 12 99 4.8 747367992 213.36 1000 102
1b6q 4 72 8.9 16720896 1.25 500 9
6rhn 8 165 6.2 58832256 19.14 1000 111

10 AÊ structures
1aki* 70 10.9 5982075 0.45 1000 49
1cgn 45 5.9 210458470 27.12 1000 98
1b6q 41 11.2 5104190 0.22 500 10
6rhn 86 7.7 18286653 3.08 1000 114

Table 4
Estimated run times for ®ne 6D global searches of target functions
computed using all data between1 and 4 AÊ .

No. of Io
h

1±4 AÊ ��2

No. of grid
points Factor

Estimated search
time (d)

1aki 1133 4.4 1317513600 476.2 67
1cgn 727 2.4 43360941130 426.1 3788
1b6q 515 4.5 1009536576 431.9 22
6rhn 1168 3.1 3584438784 431.3 344



safe limit for the high-resolution cutoff, given the current step

lengths in the MR variables. Thirdly, we have shown that

optimization is essential to the new approach because it

increases the contrast between the function values associated

with points close to MR solutions, improving these points and

producing local minima with the very lowest function values.

Finally, clearly the new approach works well even if some of

the lowest resolution data are missing.

The major strength of our new strategy is the novel inte-

gration of a coarse 6D search, using a surrogate low-resolution

function, and a multi-start local optimization process, using a

higher resolution target function. The coarse search is rela-

tively fast and cost-ef®cient compared with ®ne 6D grid

searches. Unlike traditional methods, our new strategy spends

more computational effort in promising areas of the variable

space where solutions are likely to occur. Also, unlike

stochastic 6D methods, it is deterministic in nature and can

be completely parallelized. We believe that as computing

resources improve, more accurate and robust approaches like

SOMoRe will become increasingly more attractive not only for

solving more dif®cult problems, but for general use as well.

The program SOMoRe will be available upon request from

the authors. In the future, we anticipate that it will be available

for download from the World Wide Web.

APPENDIX A
Finite-difference gradient

An analytic expression is not readily available for the gradient

of the correlation coef®cient because interpolation is used to

determine the appropriate structure factors for each orienta-

tion and translation of the model protein considered during

MR. However, the gradient can be approximated using ®nite

differences. The jth component of the ®nite-difference

approximation to the gradient of C[Ic(u), Io] is

rCj �
C�Ic�u� hej�; Io� ÿ C�Ic�u�; Io�

h
; �A1�

where u = (�, t), ej is the jth standard Euclidean basis vector,

h = h"sign(uj), sign(uj) is the sign of uj (either 1 orÿ1) and h" is

typically a small number. When angles are expressed in

radians and translations expressed in fractional coordinates,

h" = 10ÿ4 allows the local optimization method BFGS to

perform well; that is, to converge in most cases after a

reasonable number of iterations and produce a ®nal gradient

with a relatively small norm. Finally, h = h"sign(uj) to prevent

possible roundoff error from subtracting two numbers that are

close in magnitude. Two general references are Dennis &

Schnabel (1996) and Nocedal & Wright (1999).

APPENDIX B
Determining the closest symmetry mate

A pseudo code for determining the closest symmetry mate is

given below. Let the center of mass of a molecule be

c = (
PN

j�1 xj=N,
PN

j�1 yj=N,
PN

j�1 zj=N�, where N is the number

of atoms and (xj, yj, zj) are the orthogonal coordinates of the

jth atom.

Pseudo code for determining the closest mate

Step 1. Compute the centers of mass of symmetry mates i

and j, ci and cj.

Step 2. Compute dc = ci ÿ cj.

Step 3. Convert dc to fractional coordinates; that is, compute

df = Aÿ1dc.

Step 4. Add the translation bt (which is in fractional co-

ordinates) to the fractional coordinates of symmetry mate j.

A pseudo code for determining the appropriate basis vector

translation, bt, is below. Let df(k) and bt(k) refer to the kth

component of df and bt and let ¯oor(), ceil() and mod() be the

standard ¯oor, ceiling and modulo functions, respectively.

Pseudo code for determining bt

for k = 1 to 3

if df(k) > 0 (mate i is to the right of mate j with respect to

basis vector k),

bt(k) = ¯oor(df(k))

if mod(df(k),1.0) > .5,

bt(k) = bt(k) + 1

else

bt(k) = ceil(df(k))

if mod(df(k),1.0) < ÿ.5,

bt(k) = bt(k) ÿ 1

end

end
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